1. Rachel A. Spinti, Laura E. Condon, Jun Zhang. The evolution of dam induced river
fragmentation in the United States, Nature Communications, 2023 (14), 3820.
https://www.nature.com/articles/s41467-023-39194-x
4. Chen Y, Chen E, Zhang J, et al. Investigation of Model Uncertainty in Rainfall-Induced
Landslide Prediction under Changing Climate Conditions[J]. Land, 2023, 12(9): 1732.
https://doi.org/10.3390/land12091732
3. Yang, Q., Dai, Q., Chen, Y., Zhang, S., & Zhang, Y., 2022, Effects of air pollution on
rainfall microphysics over the Yangtze River Delta, Journal of Geophysical Research:
Atmospheres, 127: e2021JD035934.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021JD035934
4. Yang, Q., Dai, Q., Zhang, S., Zhu, K., & Zhang, L., 2022, Raindrop size distribution
retrieval model for Xband dual-polarization radar in China incorporating various climatic
and geographical elements, IEEE Transactions on Geoscience and Remote Sensing, 60: 5112417.
https://ieeexplore.ieee.org/abstract/document/9759454
3. Zhang, J., Condon, L. E., Tran, H., & Maxwell, R. M. (2021). A national topographic
dataset
for hydrological modeling over the contiguous United States. Earth System Science Data,
13(7), 3263-3279.
https://essd.copernicus.org/articles/13/3263/2021/
4. Zhu, J., Zhang, S., Yang, Q., Shen, Q., Zhuo, L. & Dai, Q., Comparison of rainfall
microphysics characteristics derived by numerical weather prediction modeling and
dual-frequency precipitation radar. Meteorological Applications, 2021, 28(3): e2000.
https://rmets.onlinelibrary.wiley.com/doi/10.1002/met.2000
2. Yang, Q., Dai, Q., Han, D., Zhu, Z., & Zhang, S., 2020, Uncertainty analysis of radar
rainfall estimates induced by atmospheric conditions using long short-term memory networks,
Journal of Hydrology, in press.
https://www.sciencedirect.com/science/article/pii/S0022169420309422
7. Cai, J., Zhu, J., Dai, Q., Yang, Q., & Zhang, S., 2020, Sensitivity of a weather research
and forecasting model to downscaling schemes in ensemble rainfall estimation, Meteorological
Applications, 27(1): e1806.
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.1806
2019
1. Dai, Q., Yang, Q., Han, D., Rico-Ramirez, M.A., & Zhang, S., 2019. Adjustment of
radar‐gauge
rainfall discrepancy due to raindrop drift and evaporation using the Weather Research and
Forecasting model and dual-polarization radar. Water Resources Research, 55: 9211–9233.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019WR025517
2. Zhao, B., Dai, Q., Han, D., Dai, H., Mao, J, Zhuo, L. & Rong, G., 2019, Estimation of
soil
moisture using modified antecedent precipitation index with application in landslide
predictions, Landslide, 16: 2381-2393.
https://link.springer.com/article/10.1007/s10346-019-01255-y
3. Zhuo, L., Dai, Q., Han, D., Chen, N., & Zhao, B., 2019, Assessment of simulated soil
moisture from WRF Noah, Noah-MP, and CLM Land surface schemes for landslide hazard
application, Hydrology and Earth System Sciences, 23: 4199–4218.
https://hess.copernicus.org/articles/23/4199/2019/
4. Zhu, X., Dai, Q., Han, D., Zhuo, L., Zhu, S., & Zhang, S. 2019, Modeling the
high-resolution
dynamic exposure to flooding in a city region, Hydrology and Earth System Sciences, 23,
3353–3372.
https://hess.copernicus.org/articles/23/3353/2019/
5. Zhao, B., Dai, Q., Han, D., Dai, H., Mao, J & Zhuo, L., 2019, Probabilistic thresholds
for
landslides warning by integrating soil moisture conditions with rainfall thresholds, Journal
of Hydrology, 574: 276-287.
https://www.sciencedirect.com/science/article/pii/S0022169419304020
6. Yang, Q., Dai, Q., Han, D., Chen, Y., & Zhang, S., 2019, Sensitivity analysis of raindrop
size distribution parameterizations in weather research and forecasting rainfall simulation,
Atmospheric Research, 228:1-13.
https://www.sciencedirect.com/science/article/pii/S0169809518316211
7. Liu, Z., Dai, Q., & Zhuo, L., 2019, Relationship between Rainfall Variability and the
Predictability of Radar Rainfall Nowcasting Models, Atmosphere, 10(8): 458.
https://www.mdpi.com/2073-4433/10/8/458
8. Zhuo, L., Dai, Q., Han, D., Zhao, B., Chen, N., & Berit, M., 2019, Evaluation of remotely
sensed soil moisture for landslide hazard assessment, IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing,12(1): 162-173.
http://eprints.whiterose.ac.uk/153254/
1. Dai, Q., Yang, Q., Zhang, J., & Zhang, S. 2018, Impact of gauge representative error on a
radar rainfall uncertainty model, Journal of Applied Meteorology and Climatology, 57:
2769–2787.
https://www.jstor.org/stable/26677206?seq=1
2. Yang, Q., Dai, Q., Han, D., Zhu, X., & Zhang, S., 2018, Impact of the Storm Sewer Network
Complexity on Flood Simulations According to the Stroke Scaling Method, Water, 10(5): 645.
https://www.mdpi.com/2073-4441/10/5/645
3. Zhu, J., Dai, Q., Deng, Y., Zhang, A., Zhang, Y., & Zhang, S., 2018, Indirect Damage of
Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling,
Water, 10(5): 622.
https://www.mdpi.com/2073-4441/10/5/622
8. Dai, Q., Han, D., Chen N. & Jacomo, A.L., 2018, Probabilistic critical rainfall
thresholds
for landslide occurrence using the WRF model in China, EGU General Assembly, Vienna,
Austria.
https://ui.adsabs.harvard.edu/abs/2018EGUGA..20.3404D/abstract
2. Dai, Q., & Zhang, S., 2017, Impact of scale discrepancy between radar and gauge on radar
ensemble rainfall generator, International Symposium on Weather Radar and Hydrology, Seoul,
Korea.
3. Dai Q, Han D, Srivastava P K. Radar Rainfall Sensitivity Analysis Using Multivariate
Distributed Ensemble Generator[M]//Sensitivity Analysis in Earth Observation Modelling.
Elsevier, 2017: 91-102.
https://doi.org/10.1016/B978-0-12-803011-0.00005-7
2016
1. Dai, Q., Han, D., Zhuo, L., Zhang J., Islam, T., & Srivastava, P.K. 2016, Seasonal
generation of ensemble radar rainfall estimates using copula and autoregressive model,
Stochastic Environmental Research and Risk Assessment, 30(1): 27-38.
https://link.springer.com/content/pdf/10.1007/s00477-014-1017-x.pdf
3. Zhuo, L., Dai, Q., Islam, T., & Han, D., 2016, Error distribution modelling of satellite
soil moisture measurements for hydrological applications, Hydrological Processes, 30:
2223-2236.
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10789
4. Islam, T., Srivastava, P.K., Kumar, D., Petropoulos, G.P., Dai, Q., & Zhuo, L. 2016,
Satellite radiance assimilation using a 3DVAR assimilation system for hurricane Sandy
forecasts. Natural Hazards, 82(2): 845-855.
https://link.springer.com/article/10.1007/s11069-016-2221-4
5. Srivastava, P.K., Han, D., Islam, T., Petropoulos, G., Gupta, M. & Dai, Q. 2016, Seasonal
evaluation of Evapotranspiration fluxes from MODIS Satellite and Mesoscale Model Downscaled
Global Reanalysis Datasets. Theoretical and Applied Climatology, 124: 461-473.
https://link.springer.com/content/pdf/10.1007/s00704-015-1430-1.pdf
6. Srivastava, P.K., Islam, T., Singh, S.K., Petropoulos, G., Gupta, M. & Dai, Q. 2016,
Forecasting Arabian Sea level rise using exponential smoothing state space models and ARIMA
from TOPEX and Jason satellite radar altimeter data. Meteorological Applications, 23(4):
633-639.
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.1585
7. Islam, T., Srivastava, P.K., & Dai, Q. 2016, High resolution WRF simulation of cloud
properties over the super typhoon Haiyan: Physics parameterizations and comparison against
MODIS. Theoretical and Applied Climatology, 126: 427–435.
https://link.springer.com/article/10.1007%2Fs00704-015-1575-y
8. Dai, Q., Han, D., Rico-Ramirez, M.A. & Srivastava, P.K., 2016, Geospatial Technology for
Water Resources Development: Spatio-temporal Uncertainty Model for Radar Rainfall, CRC Press
2015
1. Dai, Q., Han, D., Rico-Ramirez, M.A., Zhuo, L., Nanding, N. & Islam, T., 2015, Radar
rainfall uncertainty modelling influenced by wind, Hydrological Processes, 29: 1704-1716.
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10292
2. Dai, Q., Rico-Ramirez, M.A., Han, D., Islam, T. & Liguori S. 2015, Probabilistic radar
rainfall nowcasts using empirical and theoretical uncertainty models, Hydrological
Processes, 29: 66-79.
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10133
5. Srivastava, P.K., Han, D., Rico-Ramirez, M.A., O’Neill, P., Islam, T., Gupta, M. & Dai,
Q.
2015, Performance evaluation of WRF-Noah Land surface model estimated soil moisture for
hydrological application: Synergistic evaluation using SMOS retrieved soil moisture, Journal
of Hydrology,511: 17-27
https://www.sciencedirect.com/science/article/pii/S0022169415005478
6. Zhuo, L., Dai, Q. & Han, D., 2015, Meta-analysis of flow modeling performances—to build a
matching system between catchment complexity and model types, Hydrological Processes, 29:
2463–2477.
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10371
7. Zhuo, L., Han, D., Dai, Q., Islam, T., & Srivastava, P.K., 2015, Appraisal of NLDAS-2
multi-model simulated soil moistures for hydrological modelling, Water Resources Management,
29: 3503-3517.
https://link.springer.com/article/10.1007/s11269-015-1011-1
8. Islam, T., Srivastava, P.K., Dai, Q., Gupta, M. & Zhuo, L. 2015, An introduction to
factor
analysis for radio frequency interference (RFI) detection on satellite observations.
Meteorological Applications, 22: 436-443.
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.1473
9. Srivastava, P.K., M.A., Islam, T., Gupta, M., Petropoulos, G., & Dai, Q. 2015, WRF
dynamical
downscaling and bias correction schemes for NCEP estimated Hydro-meteorological variables.
Water Resources Management, 29: 2267-2284.
https://link.springer.com/article/10.1007/s11269-015-0940-z
10. Islam, T., Srivastava, P.K., Rico-Ramirez, M.A., Dai, Q., Gupta, M. & Singh, S.K. 2015,
Tracking a tropical cyclone through WRF ARW simulation and sensitivity of model physics.
Natural Hazards, 76: 1473-1495.
https://link.springer.com/article/10.1007/s11069-014-1494-8
11. Zhuo, L., Dai, Q., & Han, D., 2015, Evaluation of SMOS soil moisture retrievals over the
central United States for hydro-meteorological application, Physics and Chemistry of the
Earth, 83-84: 146-155.
https://www.sciencedirect.com/science/article/pii/S1474706515000728
12. Islam, T., Rico-Ramirez, M.A., Srivastava, P.K., Dai, Q., Han, D & Zhuo, L. 2015, Rain
Rate
Retrieval Algorithm for Conical-Scanning Microwave Imagers Aided By Random Forest, RReliefF
and Multivariate Adaptive Regression Splines (RAMARS). IEEE Sensors Journal, 15: 2186-2193.
https://ieeexplore.ieee.org/document/7031473
1. Dai, Q., Han, D., Rico-Ramirez, M.A. & Islam, T. 2014, Modeling radar-rainfall estimation
uncertainties using elliptical and Archimedean copulas with different marginal
distributions, Hydrological Sciences Journal, 59: 1992-2008.
https://www.sciencedirect.com/science/article/pii/S0309170808001449
3. Dai, Q., Han, D., Rico-Ramirez, M.A. & Srivastava, P.K. 2014, Multivariate Distributed
Ensemble Generator: A new scheme for ensemble radar precipitation estimation over temperate
maritime climate, Journal of Hydrology, 511: 17-27.
https://www.sciencedirect.com/science/article/pii/S0022169414000225
4. Islam, T., Srivastava, P.K., Rico-Ramirez, M.A., Dai, Q., Han, D. & Gupta, M. 2014, An
exploratory investigation of an adaptive neuro fuzzy inference system (ANFIS) for estimating
hydrometeors from TRMM/TMI in synergy with TRMM/PR. Atmospheric Research, 145: 57-68.
https://www.sciencedirect.com/science/article/pii/S0169809514001434
5. Islam, T., Srivastava, P.K., Dai, Q. & Gupta, M. 2014, Ice cloud detection from AMSU-A,
MHS,
and HIRS satellite instruments inferred by cloud profiling radar. Remote Sensing Letters, 5:
1012-1021.
https://www.tandfonline.com/doi/full/10.1080/2150704X.2014.990643
6. Huang, J., Wang, H., Dai, Q. & Han, D. 2014, Analysis of NDVI Data for Crop
Identification
and Yield Estimation, IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing (IEEE-J-STARS), 99: 1-11.
https://ieeexplore.ieee.org/document/6871305
7. Islam, T., Rico-Ramirez, M.A., Srivastava, P.K., Dai, Q., Han, D., Gupta, M. & Zhuo, L.
2014, CLOUDET: A cloud detection and estimation algorithm for passive microwave imagers and
sounders aided by Naive Bayes classifier and multilayer perceptron, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing (IEEE-J-STARS), 99: 1-7.
https://ieeexplore.ieee.org/document/6835215
8. Islam, T., Rico-Ramirez, M.A., Srivastava, P.K. & Dai, Q. 2014, Non-parametric rain/no
rain
screening method for satellite-borne passive microwave radiometers at 19-85 GHz channels
with random foreasts algorithm, International Journal of Remote Sensing, 35: 3254–3267.
https://www.tandfonline.com/doi/full/10.1080/01431161.2014.903444
1. Dai, Q., Han, D., Rico-Ramirez, M.A. & Islam, T. 2013, The impact of raindrop drift in a
three-dimensional wind field on a radar-gauge rainfall comparison, International Journal of
Remote Sensing, 34: 7739-7760.
https://www.tandfonline.com/doi/pdf/10.1080/01431161.2013.826838